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S U M M A R Y  
A logical network with n inputs and m outputs ((n, m)-network) supplied by a binary random vector may be considered 
as a device transforming the input probability distribution into the output one. In this paper a method of analysis of 
such a network is presented. The approach is based on the orthogonal expansions of the logical functions and the 
corresponding distributions into the Walsh Rademacher series. On the basis of the results obtained the synthesis 
problem has been formulated in terms of the spectral approach. 

1. Introduction 

The problem of forming a prescribed discrete probability distribution may be formulated in 
the following way. Given the binary random vector X = ( X 1 ,  2(2, . . . ,  2(,) with distribution 
P ( ~ ) = P ( x  1, x 2 . . . .  , x , ) ,  x~=0, 1, where ~ is a realization of X, it is required to get the binary 
random vector g = ( Y t ,  Y2 . . . .  , Y,,) with distribution P ( 2 ) = P ( y l ,  Y2 . . . .  , y,,), y,=0, 1, by a 
set of Boolean functions Yi =f~(~), i= 1, 2 . . . .  , m, that transform the random variable X into u 
This problem though important in digital simulation has only been partially solved for a 
particular class of distributions. However there is a lack of comprehensive and adequate 
formal approaches to deal with arbitrary distributions. We show in this paper that the analysis 
of logical functions in terms of Walsh-Rademacher functions may serve as a tool for solving 
the synthesis problem. 

2. The spectral analysis of the logical network 

The application of Walsh-Rademacher functions for the analysis of logical functions was first 
proposed--though not expressis ve rb i s - -by  Coleman [1]; however it will be useful to recall 
here the basic definitions and notations. 

2.1. The  Wal sh -Rademacher  funct ions  

Following Polyac [2] and Fine [3] we define Rademacher functions R,,(x), x e  [0, 1] in the 
following way 

Ro = 1 ; R . ( x )  ~ sgn(2"rtx)= 1 - 2 x .  (1) 

where x. is the n-th position of the binary expansion ofx. The Walsh function W.(x) of the order 
nk is defined as 

k 

I-[ R . j ( x )  = (1-2x . , ) (1 -2x .2  ) ... ( 1 -  2x.~) (2) 
j = l  

A 

where 

g/i<~ F/i+ 1 

k 

and 2 n =  ~ 2"~ ,  n = l ,  2 . . . . .  
.i=1 

The following relations will be important in the sequel 

w.(x) W (x) = W.(x) W . ( y )  = W.(x | y), 

(3) 

(4) 
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where n q)m denotes a number obtained a s a  result of modulo-2 addition of corresponding 
positions of the binary expansions of number n and m; similarly z = x �9 y is the result of such 
operation on numbers x and y. It is clear that every Rademacher function may be rewritten as 
a Walsh function 

R,(x) = W~,_, (x). (5) 

Since the set of Walsh functions is orthonorrnal and closed in L 2 ([2], [3]) then for every 
function f ( x ) e  I?, there exists its Walsh-Fourier series 

f (x)  = ~ aiW~(x ) (6) 
i = 0  

with the Fourier coefficients a i 

ai = f(x)  Wi (x) dx , (7) 
�9 0 

which converges to f (x)  almost everywhere. 
If we consider the partial sum 

N 

SN(x/= Z ai ~(xt, 
i ~ 0  

then S N(x) is the best piecewise constant approximation off (x) ;  it has been shown by Polyac 
and Schneider [2] that if N = 2 " -  1, then $2.-1 (x) is constant on intervals of length Axi = 2-":  

S 2 n -  1 (X) = S 2 . _  1 for X e ' 2" ' k = 0, 1 . . . . .  2 " -  1 

In order to make use of Walsh functions for the analysis of the logical network with n binary 
inputs x~, x z . . . . .  x, and output y ((n, 1)-network) let us notice that there exists a one-to-one 
correspondence between the set of input vectors 

{r ~ {x~),x~ ) . . . . .  x(,J)}, j = 0 , 1  . . . .  ,2  "-1 

and the set of real numbers {zj} ~ {j .2-"},  zje [0, 1): 

{zj} ~ {CA. (s) 
If we thus define the space L2. as the set of functions defined only on the finite set of points 
{z j} ~= {j. 2-"} with metric p (u, v): 

o(u, v) =tj~ 0 A  2 [u(zj)- v(zj)]2 -: 
where u, v s L  2, then it is easy to show that the set of Walsh functions is an orthogonal basis in 
LZ, since 

2 ~ -  1 

k= 0  
2n--1 

2 W](Zk)=2".  (9) 
k=O 

Because of the equivalence relation (8) every Boolean function y (~)= y (x~, x2, ..., x,) belongs to 
the space L2, and therefore may be expanded into the Walsh series 

2 n -  1 

y(~)= E a,w,(~), ~{~} 00) 
i = 0  

where 

a , =  2-" Z W~(~)y({). (11) 

Further on the row vector a ~ (ao, ax . . . . .  a2.- 1) will be referred to as the structure of the logical 
function y(~). 
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2.2. The probabilistic analysis of logical networks 

Let us assume that the input vector ~ is a realization of the binary random vector X = (X~, 
X 2 . . . .  , X,) with probability distribution P (0 .  Thus the (n, m) logical network m a y b e  thought 
of as a device transforming the vector random variable X .into the random variable Y= 
(YI, Y2 . . . . .  Ym) with probability distribution P(~) where 2~ ~= (Yl, Y2 . . . . .  Ym) is a realization of Y. 

It is clear that P (0  and ,t (0  determine the joint distribution P(~, 2) and consequently P (,~) 

{P(~), ~.(r ~ P(r ~.) ~ P(Z). (12) 

Since P (~)~ L2, and P (~, J~)~ L 2 +m then both distributions can be expanded into a Walsh series, 
2 ~ - 1  

P(r = Z c,W~(r (13) 
i = 0  

2( n+m)-  1 

P(~, '~) -- Z dj W~(r ,~), (14) 
j = 0  

where 

c, = 2-"  ~ P(r W~(r (15) 

dj = 2 -("+m) ~ P(~, ~) W;(~, ~). (16) 
(gA • {X~} 

Further on the vectors a~  (Co, cl . . . .  , c2~ and 6 z~ (do, dl, ..., dz~,+~-l) will be referred to 
as the spectrums of the distributions P (0 and P (~, ~) respectively. Now the important question 
arises whether there exist between these spectrums and the structure of the network relations 
similar to (12). The answer for the (n, l)-case is established by the following theorem. 

Theorem 1. I f  a = ( c  0, ca . . . . .  C2n_1) and ~(1)=(do, d 1 . . . . .  d2,,+1)_1) are the spectrums of the 
distributions P(O and P(~, y) respectively, then 

~a 1) = �89 07) 

where 3] 1) and ~ are 2"-elements segments of the vector ~ ,  which in turn is the concatenation 
of 0] 1) and ac21)" 

a~ 1)A= (do, d1, . . . ,  d 2 n -  1) , 02"(1) /k= (d2.,dz,.+ 1, .-., dz,.+~,-1) 

and C m denotes the matrix with entries c o being the result of the modulo-2 permutation of elements 
of the spectrum a : 

Cij = C i ( ~ j  �9 

The interpretation of the i|  operation is the same as in eq. (4). 

Proof. First of all let us notice that 

VVk (~, y) = Wk(0 for k = 0, 1 . . . .  , 2 " - 1 ,  

y)= w,(r w2o( , y)= w (0. R,+I(y) 

for k = 2 " + l , l = O ,  1 , . . . , 2 " - l .  

Taking this into account we have from (16) for i=0,  1 . . . . .  2 " -  1 

d,= Z 1)] = 2-c,+1  y_ P(0W (0, 

which when compared with (14) completes the proof of the first part of Theorem 2, (eq. 17), 
d~ = �89 c~, i = 0, 1 . . . . .  2 " -  1. For higher order elements dk of the spectrum 6 ") let us write k = 2 n + l, 
l=0,  1, ..., 2 " -  1 ; therefore (16) will take the form 
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d k = 2 -("+1) ~ [P(r 0 ) - P ( r  1)] Wk(r �9 

If we notice that for any logical function y(~) 

P r ( Y =  11 r = y( r  P r ( Y =  01~) = 1 - y ( r  (20) 

then taking into account  that P (~, y)= P (~)P (Y/C), we may substitute into (19) the relations (20) 
replacing simultaneously y (r and P (r by their or thogonal  expansions. Having performed the 
necessary t ransformations we obtain 

d k = 2  -("+1) ~ W~(~) ~ c~W~({) 1 - 2  ~ a~N(~  . 

If we note that from definition of the Walsh functions 

0 ,  if k = 1 , 2 , . . . , 2 " - 1  

Wk(~)= 2" if k = 0  

and 

then we get at last 
2 n -  1 

d k = d 2 , + l = � 8 9  ~ aiciml, I = 0 , 1 , . . . , 2 " - 1  
i = O  

or, on the basis of (17) 
2 n -  1 

d2,+l ---- dl-- 2 
i = 0  

J. Laski 

(19) 

(21) 

aiaiet,  i, 1 = 0, 1 . . . . .  2"-- 1 . 

This result constitutes the second part  (18) of Theorem 2. 
In order  to extend the results of Theorem 1 to the (n, m)-case with m output  functions 

Y~, Yz, ..., Y" let us notice that ~ C a denotes the binary operat ion on two vectors �9 and a with 
the result being a vector too. For  example, if ~ = (ao, aa, a 2, a3), a =  (Co, c~, c2, c3), then 

~tC m= (aoco+alcl  +a2c2+a3c 3, aocl +alco+a2c3+a3c2 , 

aoc2 +al  c3--}-a2co-}-a3el , aoc3 +al  c2-}-a2cl +a3eo) . 
We shall denote this operat ion as |  

�9 |  ~C m . (22) 

It is easy to verify that this operat ion is commutat ive  and associative: 

�9 e a  = a@~ = ira m = ~C m , ~e(P@7) = (~@fl ) (~7 .  (23) 

Theorem 2. The spectrum ~(") of the joint distribution P(r 2), ~ = (x 1, x 2 . . . . .  x"),  2 = (y~, Y2 . . . . .  
y") consists of 2" segments p~, i = 0, 1 . . . . .  2 " -  1 each containing 2" elements. Every segment 
corresponds to the subset of the output variables {yj}, j - -1 ,  2 . . . . .  m and can be computed by the 

following formula 

(~ i )  ~ (24) 
Pi = ~ (-1)~ a|174174 ~(i'u)) + 2 m , 

/ = 1  j = l  2 m I 

where 

r i is the number of outputs Yi~, J= 1, 2 . . . . .  ri, r i=  1, 2, .... m associated with the segment Pi, 
referred to as the rank of Pi; 
~t (iko)) is the structure of the function Yik(~) for a given combination j of output variables; 
i k are the positions of the binary expansion of i that are equal to 1, i.e. 

ri 

i = ~ ik'2 k 
k = l  
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Proof Let us rewrite the logical function Yk (0 in the following form 

Yk(~) = f [ ~ ,  Yl, YZ, ..., Y,,J 

and consider the structure fl(k)=(bo, bl, ..., b:(.+~)_ ~). If we denote by 6 (k) the spectrum of the 
joint distribution P (r yl, Y2 . . . .  , Yk) then on the basis of (17) and (18) we can write the recurrent 
equations 

/i(k) = �89  1) ; 6(0) = ,7 

where 6(k)& (/i(a ~), 6~ )) is the concatenation of the two 2("+k- Z)-elements vectors (~(k), (~(2 k) and 
the matrix B(~ = [by] ~= [bi~a]. However, because the function Yk({) is in fact independent of 
the variables y~, the structure has the following form 

= 0 1 ,  0 2 ,  . . . ,  

where Oi = (0, 0, ..., 0) are 2"-zero-elements vectors. Therefore the matrix B(~ ) is a quasi- 
diagonal one, namely 

B(~ ) = [ A(~)A(~) 'A(~ ) ] ]2 (k -  1) matrix-rows 

It is thus easy to verify that the number of segments of the spectrum 6(k) is equal to 2k: 

~ ( k ) =  (jO0 ' P l  . . . .  , JO2k- l )  , Pi = (di '2n,  di .2n+l . . . . .  d(i+l)2n--1) 

For k = 0, we have from (25) , 
(~(0) ~--- P 0  = O ' ,  (~(1) = 1 G _ _ O . ( ~ ( 1 )  ' (~(1) = ( 1 G ,  1 0 .  O.(~)~(1))  ' 

a(2)= 
1 1 

Repeating this procedure recurrently for k=  3, 4, ..., m we get expression (24) for Pi. 
It is clear that the elements gi of the spectrum g =(go, gl,- . . ,  g2m-1) of the distribution 

P(iO=P(Yl, Y2 .. . . .  Ym) are proportional to the first elements of the segments p~ namely 

gi=2".di.2,,, i =0 ,  1, ..., 2m-1 
gi = ~Pi(e(1) , 6(2) .... a(m)). (26) 

The problem of existence of any network which transforms the input white variable X =  
(X~, X2 . . . . .  X,) with uniform distribution P ( 0 = 2 - "  and position-independency into the 
variable Y has been solved by Warfield [4], [5]. He introduced the concept of the stochastic 
degree of the random vector Y as the least integer S(Y) such that for every ~j 

P ().j) = k)" 2- s(r), 

where ks, i=  0, 1, ..., 2 " - 1  are integers satisfying the condition 
2 m -  1 

ks = 2s(r). 
i=o 

In other words the stochastic degree may be interpreted as the length of the binary representa- 
tion of P(/,j). Warfield has showed that if the stochastic degree S(Y) of the output vector Y is 
finite and less then the stochastic degree S(X) of the input vector X then there exist a logical 
network (n, m) where n=S(X), m=S(u which transforms P(~) into P0"). 

Further on distributions with finite stochastic degree will be referred to as binary realizable 
ones since only such distributions may be obtained by a logical transformation of the white 
source X with P(~)= 2-". 
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Therefore for n > m the synthesis problem may be formulated in terms of the spectral analysis 
as solutions of the equations (26) with respect to the set of structures co zx (~(~), ~(2), ..., e(,,~) 
for given values of the spectrum V= (go, 91, g2, ..., g2,--t) of the binary realizable distribution 
P(2). However, equations (26) may be in general satisfied by co not being the set of structures 
of logical functions. 

Consequently the question arises, what kind of conditions should be satisfied by an arbitrary 
2"-elements vector lg= (bo, bl, ..., b2,-1) to represent a logical function. These conditions are 
established by the following theorem. 

Theorem 3. A necessary and sufficient condition for any 2"-elements vector Z = (ko, kl, ..., k2,- 1 ) 
to represent a logical function is to satisfy the set of equations 

2 n -  1 

k i =  3" kikie~, j = 0 , 1 , . . . , 2 " - i  (27) 
i=0  

Proof First of all, let us note that a necessary and sufficient condition for any function 
y (~) to be a logical one i.e. to take values 0 or 1 only is to satisfy the following equation 

y(~) = y2 (~) (28) 

for every Ce {r 
In order to prove the necessity of the conditions (27) for a given logical function y (~) let us 

substitute its Walsh series into the expression z (r (r and take into account relation (4): 
2n--I  2n--1 

z ( r  E 3` k, kjW~oj(r (29) 
i = 0  j = o  

Assuming that 
2n--1 

z(r = 3` bk VCk (r 
k=O 

w e  h a v e  
2 n - 1  2 n - 1  

= 2- .  Z 3` k, kj 
i=  0 j = 0 {~j} 

or on the basis of (21) 
2 " -  1 

bj = 3` kik~.j .  
i=0  

To prove the sufficiency of these conditions let us assume that there exists a function z(~), 
with spectrum fl=(bo, bl, ..., b2,-1) satisfying eqs. (27), which is not a logical one i.e. there 
is at least one vector r {r for which Z(r162 Z 2 (r Squaring the sum z(r Zbi  W~(r and 

i 
finding the structure of z z (~) we get (29); making then use of (27) we obtain (28). 

It is easy to see that the conditions (27) may be rewritten in the matrix form 
~A~ = ~ (30) 

~ |  = ~ (31) 

The results of this section may be summarized in the form of 

Theorem 4. A necessary and sufficient condition for any set of structures o) = ( ~(1), ~(2), ...., ~(,,)), 
to represent the transformation of the white vector X = (X 1, X 2, ..., X,) into the binary realizable 
vector Y=(Y1, Y2, ..., Y,,) with distribution P(~)=P(Yl,  Y2, "",Ym) and stochastic degree 
m < n is to satisfy the following set of equations 

~((1)| _= ~(~), go = q'o (~(i), ~(2), ..-, (X(m)) 
~(2) @ ~ ( 2 ) =  ~(2), 01 = ~01 (0~(1), 0~(2) . . . . .  ~(rn)) (32) 

~(,~)| or(m) -_ ~(m), g2 , - -  1 --- ~~ ~ (~(~), ~(2), ..., ~(m)) 
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where go, gl, ..., g2m-1 is the spectrum of P(i 0 and the functions q~i(o), i = 0 ,  1 . . . . .  2 " - 1  are 
defined by (26). 

4. Conclusions 

In the previous sections we have formulated the analysis and synthesis problem in terms of the 
spectral approach. However the results are not completed--particularly there is a need of a 
methodical algorithm for solving the set of equations (32). It would by very useful to reformulate 
this algorithm into the form of logical equations and implement it in the form of a computer 
program. There is a perspective of doing this based upon the following circumstances. 

Let us note that the system Q __zx (S, ,  |  1)  where S, is the set of all 2"-elements vectors is a 
semigroup with unity 1=(1 ,0 ,0 ,  ...,0). If we consider the system ~ b = ( f , , . ,  l z )  where 
f,  is the set of all functions defined on the set {~j}, j =  0, 1 . . . .  ; 2 " -  1 ; " ' "  is the operation of 
multiplication in f, and 11 is the function identically equal to 1, then the transformation 
T: O~q5 is an isomorphism f2 onto qk Moreover if we consider the subset ~, c S,, such that 
for every ~ ~ a,, a | ~ = a holds then the transformation T transforms ~, into the subset I. c f ,  
of all logical functions of n variables. Therefore all expressions in terms of the spectral analysis 
have their equivalents in the Boolean equations domain. 

Although the applications of Theorem 4 are only restricted to a white-source at the input.of 
the network and to the binary-realizable distributions at the output they can be extended to 
include these cases too. However the solution will be then the best least-square approximation 
of the required one. 

Let us also note that because of the commutativity of the operation a |  it is possible to 
formulate the reverse synthesis problem, namely: given a prescribed distribution P (2) and a 
(n, m)-network to find an input distribution P (r that yields P (2). 
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